诺玛科(重庆)汽车零部件有限公司 2024年度碳排放核查报告

核查机构 (签字/盖章): 中冶赛迪重庆环境咨询有限公司

核查机构负责人: 吕爽

报告编制日期: 2025年5月18日 (2009)91

核查基本情况表

1.受核查重点排放单位基本信息

重点排放单位名称	诺玛科(重庆)汽车零部件有限公司	法定代表人	李植
生产经营场所地址	重庆市江北区鱼 嘴镇长茂路9号	统一社会信用 代码	91500000596718821U
所属行业领域	机械设备制造行业	报告联系人及电话	田湘平, 17623088865
排污许可证编号	915000005967188 21U001X	受委托的碳排 放咨询服务机 构	/

2.核查机构基本信息

核查机构名称及统	中冶赛迪重庆环境咨询有限公司		
一社会信用代码	9150000008241939X9		
核查日期	2025年5月9日		
核查工作组长及成 员	钟姗(组长)、宁丽丹(组员)		

3. 核查结论

(一) 初次提交排放报告的数据

碳排放报告(初次提交)日期: 2025年4月18日

初次提交报告中的排放量(tCO₂e): 22484

初次提交报告中与配额分配相关的生产数据:发动机缸体、变速箱壳体 45713t。

(二) 最终提交排放报告的数据

碳排放报告(最终)日期: 2025年5月18日

最终提交报告中的排放量(tCO₂e): 22125

最终提交报告中与配额分配相关的生产数据:发动机缸体、变速箱壳体 45713t,排放强度为 0.484 tCO₂/t,生产天数为 329 天。

最终提交报告较初次提交报告发生变化的情况说明:

初版排放报告计算时,未优先采用抄表数据进行计算;企业综合能耗因单位 换算填写错误,单位为万t,应为0.83,写成8300。

(三) 其他需要说明的重要情况:

无

核查工作组长 (签字): 为大人人

核查工作组成员(签字);

核查机构盖章

4.受核查重点排放单位意见:

我公司对核查结论无

法定代表人或委托代表

盖章:

核查报告报送部门

重庆市生态环境局

目 录

1	根	死述1
1.1		核查目的1
1.2		核查范围1
1.3		核查原则与依据2
1.3.	1	核查原则2
1.3.	.2	核查依据2
2	杉	该查过程和方法4
2.1		核查组安排4
2.2		文件评审4
2.3		现场核查5
2.4		核查报告编写及内部技术复核6
3	杉	亥查发现7
3.1		基本情况的核查7
3.1.	.1	企业简介7
3.1.	.2	主营产品及生产工艺9
3.2		核算边界的核查11
3.2.	.1	核算边界的确定11
3.2.	.2	排放源的种类11
3.2.	.3	核算边界是否存在变化12
3.3		核算方法的核查12
3.4		核算数据的核查12
3.4.	.1	活动数据及来源的核查12
3.4.	.2	排放因子和计算系数数据及来源的核查16
3.4.	.3	排放量的核查16
3.4.	4	与配额分配相关的生产数据的核查17

M	一个(里次)(1)中令即任公司 2024 中)	文映所从仅且以口
3.5		
3.6	其他核查发现	20
4	核查结论	20
4.1	排放报告与核算指南的符合性	20
4.2	排放量声明	20
4.3	与配额分配相关的生产数据声明	21
4.4	排放量及与配额分配相关的生产数据存在	异常波动的原因说明
		23
	核查过程中未覆盖的问题或者需要特别说	
5	附件	25
附件	牛1:不符合项清单	25
附件	牛2:对今后核算活动的建议	26
附件	牛3: 支持性文件清单	27

概述

1.1 核查目的

根据《碳排放权交易管理办法(试行)》、《碳排放权交易管理暂 行条例》、《企业温室气体排放报告核查指南(试行)》、《重庆市碳排 放核查技术指南》、《重庆市企业温室气体排放核算方法与报告指南 机械设备制造业》和《重庆市生态环境局关于开展重庆市 2024 年度 碳排放核查及复查工作的通知》的要求,为扎实做好重庆市碳排放权 交易市场建设相关工作, 夯实数据基础, 中冶赛迪重庆环境咨询有限 公司受重庆市生态环境局的委托,对诺玛科(重庆)汽车零部件有限 公司(以下简称"受核查方")2024年度的碳排放报告进行核查,此次 核查目的包括:

- 1)核查该企业的温室气体核算和报告的职责、权限是否已经落 实,为制定温室气体排放控制计划、碳排放权交易策略提供支撑,为 重庆市碳交易制度下的配额分配和企业履约提供支撑:
- 2)核查该企业提供的温室气体排放报告及其他支持文件是否是 完整可靠,并且符合《重庆市企业温室气体排放核算方法与报告指南 机械设备制造业》(以下简称《核算指南》)和《重庆市碳排放核查技 术指南》(以下简称《核查指南》)要求;
- 3)根据《重庆市企业温室气体排放核算方法与报告指南 机械设 备制造业》的要求,对记录和存储的数据进行评审,判断数据及计算 结果是否真实、可靠、正确:
- 4) 督促企业建立健全温室气体排放管理制度,建立温室气体核 算和报告的质量保证体系,促进企业减少温室气体排放;
- 5)为重庆市生态环境局准确掌握重点企业温室气体排放情况, 制定相关政策提供支撑。

1.2 核查范围

本次核查范围为诺玛科(重庆)汽车零部件有限公司(以下简称: 排放单位)核算边界内的温室气体排放总量,根据《核算指南》核算 边界包括: 主要生产系统和辅助生产系统对应的化石燃料燃烧产生的 碳排放、消耗电力和热力产生的碳排放,不包括附属生产系统如生产 指挥系统(厂部)和厂区内为生产服务的部门和单位(如职工食堂、 车间浴室、保健站等),也不包括建设、改造活动产生的排放,产品 研发、测试系统产生的排放,以及生活源排放(如企业内宿舍、学校、 文化娱乐、医疗保健、商业服务等)。其中,主要生产系统包括从原 材料经计量进入原料场(库)开始,到产品产出为终点,其间所有工 序和装备所组成的完整工艺过程;辅助生产系统包括动力、供电、供 水、化验、环保设施、机修、库房、厂内运输等。

1.3 核查原则与依据

1.3.1 核查原则

(1) 客观独立

保持独立于委托方和受核查方,避免偏见及利益冲突,在整个核 **查活动中保持客观**。

(2) 诚信守信

具有高度的责任感,确保核查工作的完整性和保密性。

(3) 公平公正

真实、准确地反映核查活动中的发现和结论,如实报告核查活动 中所遇到的重大障碍,以及未解决的分歧意见。

(4) 专业严谨

具备核查必须的专业技能,能够根据任务的重要性和委托方的具 体要求,利用其职业素养进行严谨判断。

1.3.2 核查依据

1)《碳排放权交易管理暂行办法》(中华人民共和国国家发展和

改革委员会令 17号)

- 2) 《中国机械设备制造企业温室气体排放核算方法与报告指南 (试行)》
- 3)《重庆市碳排放权交易管理办法(试行)》渝府发〔2023〕6 号
 - 4)《重庆市碳排放核查技术指南》
- 5)《重庆市企业温室气体排放核算方法与报告指南 机械设备制 造业》
- 6)《重庆市生态环境局关于开展重庆市 2024 年度碳排放核查及 复查工作的通知》
 - 7)《综合能耗计算通则》GB/T2589-2020

核查过程和方法

2.1 核查组安排

本次工作将根据核查企业行业、地理位置、时间限制等要求,选 择具备被核查的重点排放单位所在行业的专业知识和工作经验的人 员组成核查组。核查组充分考虑企业所在的行业领域、工艺流程、设 施数量、规模与场所、排放特点、人员的专业背景和实践经验、企业 碳排放复杂程度、技术风险等方面的因素,由1名核查组长、1名核 查组成员组成,并指定2名具有相关领域专业经验的人员作为技术复 核人员。

核查组组成及技术复核人见表 2.2-1 和表 2.2-2。

序号	姓名	职责	核查工作分工
1	钟姗	组长	主要负责项目分工及核查质量控制、撰写核查报告,并确 定核算边界、参加现场访问等。
2	宁丽丹	组员	核查组成员,主要负责文件评审、活动数据、相关参数核查,并参加现场访问与报告编制等。

表 2.2-1 核查组成员表

# 2 2 — 2	++++++++++++++++++++++++++++++++++++++
表 2.2-2	技术复核组成员表

序号	姓名	核查工作分工
1	张尚宣	技术评审
2	赵珂	质量复核

2.2 文件评审

根据《重庆市碳排放核查技术指南》《重庆市企业温室气体排放 核算方法与报告指南 机械设备制造业》,核查组于对企业提供的支持 性文件和 2024 年度初始排放报告进行了文件评审。核查工作组长组 织收集评审所需的资料,核查工作组重点评审了企业生产工艺流程、 核算边界、碳排放源、活动数据、排放因子、核算方法等信息,汇总

碳排放报告中的有疑问的信息,形成现场核查的思路和重点。

文件评审要点如下:

- 1) 排放报告中生产设施信息、数据确认方式的完整性、准确性;
- 2) 排放报告中的所有活动数据的来源及数值进行核查:
- 3) 排放报告中核算方法是否符合核算指南的要求。 通过文件评审识别出以下需要特别关注:
- 1) 熔炼炉等消耗的天然气量:
- 2)产品产量及生产天数:
- 3) 固定设施的数量与位置的准确性、完整性。

2.3 现场核查

核查工作组于 2025 年 05 月 9 日开展现场核查, 验证受核查重点 排放单位核算边界的界定、排放源的识别、活动数据的统计、排放因 子的统计或选取、碳排放量的计算等是否符合核查准则的相关要求。 现场核查包括启动会、信息收集与验证(包括看现场前未提供的支持 性材料)、现场查看相关排放设施及测量设备、与排放单位主要碳排 放负责人员访谈、形成核查意见及总结会等步骤。访谈对象及主要内 容见表 2.3-1。

表 2.3-1 现场访谈记录

时间	访谈对象 (姓名/职位)	部门	访谈内容	
			企业基本情况;	
			企业地理范围及边界;	
9095年5日	田湘平/工程师	HSE部	企业组织管理结构;	
9日			主要生产工艺、产品情况、生产计划和	
			相应耗能情况等;	
			温室气体排放量计算、排放报告及管理	
			职责设置;	

15	ה	1

时间	访谈对象 (姓名/职位)	部门	访谈内容
			企业核算边界、重点排放设备型号和耗
			能种类;
			企业相关计量器具配备情况;
			活动水平数据来源及记录;
			排放因子数据来源及记录;
			生产数据记录台账和财务相关票据等。

2.4 核查报告编写及内部技术复核

核查工作组根据现文件审核和现场核查结果,向受核查企业初始 排放报告开具了2个不符合项目,并于2025年5月9日将不符合项 发送给排放企业,详细不符合项清单见核查报告附件1。在不符合项 全部关闭后,编制了本核查报告,报告主要内容如下:

- (1) 受核查重点排放单位基本情况;
- (2) 核查过程描述:
- (3)核查意见及整改情况;
- (4) 核查结论:
- (5) 报告附件。

根据核查方中冶赛迪环境咨询有限公司内部管理程序,依据《咨 询项目工作流程规定》O/CISDI 19D1.3—2024、《咨询项目技术评审 管理办法》Q/CISDI 19M13.53—2024,本核查报告在提交给核查委托 方前,须经过三级审核和技术评审,三级审核流程包括:一级审核是 由核查组成员交叉审核,二级审核是由项目负责人针对交付报告进行 审核,三级审核是由技术负责人针对交付报告进行审核。三级审核完 毕,并按照审核意见修改完善后,公司组织相关技术专家开展项目产 品技术评审,对项目组提交产品的质量进行合规性、合理性、全面性 检查,以满足向委托方提交产品的质量要求。

3 核查发现

3.1 基本情况的核查

3.1.1 企业简介

诺玛科(重庆)汽车零部件有限公司成立于2012年,诺玛科(重 庆)汽车位于重庆市江北区鱼嘴镇长茂路9号,专注汽车发动机铝制 气缸体、变速箱壳体等零部件生产。曾用名为尼玛克(重庆)汽车零部 件有限公司。该公司隶属于墨西哥第二大工业集团--阿尔法集团旗下 诺玛科公司的子公司,具有独立企业法人资格。

诺玛科成立于 1979 年,本部在墨西哥。主要从事汽车发动机铝 制汽缸盖、汽缸体、悬挂系统零部件生产。是全球百强汽车零部件生 产供应商之一。 诺玛科 (重庆) 汽车零部件有限公司客户主要包括长 安福特、北京奔驰-戴姆勒、一汽大众奥迪等几家。

自诺玛科公司成立以来,业务不断壮大,业绩稳步增长,先后在 亚洲、欧洲、美洲的 13 个国家建立了 38 家工厂, 2011 年全球销售 收入约32亿美元,员工超过16000名。

诺玛科公司于 2007 年进入中国,首选是将南京泰克西铸铝有限 公司揽入旗下。作为其中亚洲地区的第一家工厂,并以此为基石,搭 建亚洲业务构架,目前诺玛科(南京)汽车零部件有限公司已成为华 东地区铸铝的龙头企业。

诺玛科(重庆)汽车零部件有限公司成立是诺玛科公司向中国内 陆城市扩展迈出的重要一步,将为重庆市乃至西部地区的汽车制造业 的发展提供更为方便的服务。

公司设立了生产部、AME&设备维修部、模具部、人资部、物流 部、采购部、财务部、商务部、工程部、质量部、HSE 等部门,设置 HSE 作为安全生产管理部门,公司设立安全生产委员会作为安全生产 管理机构,配置专职安全生产管理人员3名;公司现有员工275人。

企业基本信息见表 3.1-1。

表 3.1-1 企业基本信息一览表

名称	诺玛科(重庆)汽车零部件有限公司			
注册地址	重庆市江北区鱼嘴镇长茂路9号			
生产地址	重庆ī	市江北区鱼嘴镇长茂路	. 9 号	
统一社会信用代码	91500000596718821U			
排污许可证编号	91500000596718821U001X			
法定代表人	李植			
单位性质	外商投资			
所属行业	有色金属铸造 行业代码 3392			
主要联系人	田湘平 职务 工程师			
联系方式	17623088865			
电子邮件	Xiangping.tian@nemak.com			

排放单位组织机构图及厂区平面布置总图见图 3.1-1 和图 3.1-2 错误!未找到引用源。。

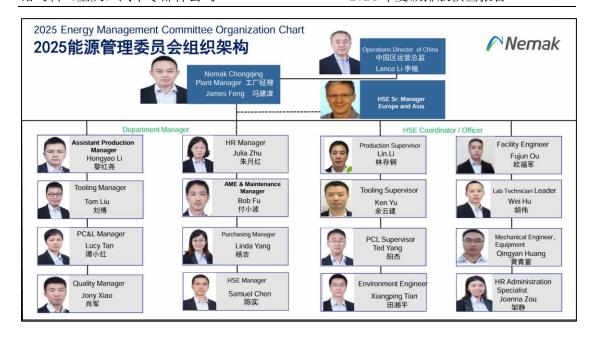


图 3.1-1 企业组织机构图

图 3.1-2 厂区平面布置图

主营产品及生产工艺 3.1.2

铝合金发动机缸体、变速箱

排放单位的主营产品为铝合金发动机缸体、变速箱,产品代码为 3502010104,企业主营产品相关信息见表 3.1-2。

主营产品名称 产品代码

表 3.1-2 企业主营产品

3502010104

主要工序有:

第一步: 由采购员购置原辅材料, 进入材料库房。

第二步:将铝合金锭倒入熔炉,用天然气作燃料加热到680℃使 其熔化成液态,每次每个熔炉熔化 5 吨/时,车间内共设置了三个熔 炉。

第三步:将液体脱模剂喷在模具上,然后将熔化后的铝合金液倒 入 2500 吨的高压磨铸造机中压力挤压成型。

第四步:对成型后的缸体在保温炉内进行热处理,提升铸造件的 硬度, 热处理工艺为 T5(固溶处理加不完全人工时效), 保温 3 小时, 每次处理20吨。

第五步: 用切边机对热处理后的工件切边, 去毛刺。

第六步: 喷丸机喷丸, 消除缸体表面应力。

第七步:为保证产品质量,车间专用房内设有一台 X-ray 机,用 于不同批次产品的探伤检验。

第八步:对产品编码、包装入库。

第九步:成品装车外销。

生产工艺流程见图 3.1-3。

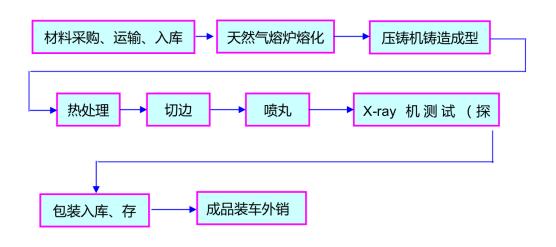


图 3.1-3 生产工艺流程图

3.2 核算边界的核查

3.2.1 核算边界的确定

通过文件评审及现场访问过程中查阅相关资料、与重点排放单位 代表访谈,核查组确认重点排放单位为独立法人,因此企业边界以法 人单位诺玛科(重庆)汽车零部件有限公司为边界,排放单位的温室 气体核算和报告范围为位于重庆市江北区鱼嘴镇长茂路 9 号生产厂 区范围内的主要生产系统、辅助生产系统对应的燃料燃烧排放、生产 过程排放以及消耗电力、热力对应的二氧化碳排放,不包含附属生产 系统的碳排放。

排放单位重庆市外无其他分支机构,截止目前不涉及合并、分立 和地理变化等情况。因此,核查组确认《排放报告(终版)》的核算 边界符合《核算方法》的要求。核查组通过查看现场及访谈企业,确 认企业的场所边界为企业在重庆市内的厂区:设施边界包括企业在重 庆市内所有排放设施:核算边界包括设施边界内排放设施的二氧化碳 直接排放和二氧化碳间接排放,并确认以上边界均符合《核算方法》 的要求。

3.2.2 排放源的种类

通过现场核查可知,排放单位 2024 年度的排放源及排放设施见 表 3.2-1。

排放源类别	排放设施	排放设施位置	相应物料或能源种类
燃料燃烧排放	熔炼炉、热处理装置	厂内	天然气
	叉车、发电机	厂内	柴油
生产过程排放	不涉及		

表 3.2-1 主要排放源和排放设施

排放源类别	排放设施	排放设施位置	相应物料或能源种类
外购电力	各用电设施	厂内	电力
外购热力	不涉及		

综上所述,核查组对核算边界内的全部排放设施进行了核查,企 业使用的化石燃料等能源种类无变化。

3.2.3 核算边界是否存在变化

核查组通过文件评审及现场访问过程中查阅相关资料、与受核查企业代表访谈,排放单位核算边界与《核算指南》边界一致,纳入核算和报告边界的排放设施和排放源完整,与 2024 年度相比,核算边界无变化。

3.3 核算方法的核查

核查组通过评审初始排放报告,确认排放单位采用的温室气体排放核算方法符合《重庆市企业温室气体排放核算方法与报告指南 机械设备制造业》、《重庆市碳排放核查技术指南》的要求。核查组未发现核算方法偏离《核算指南》要求的情况。

3.4 核算数据的核查

3.4.1 活动数据及来源的核查

核查工作组依据《核算指南》,对排放单位《排放报告》中的每一个活动数据的来源及数值进行了核查。核查的内容包括活动数据的单位、数据来源、监测方法、监测频次、记录频次、数据缺失处理等。并对数据进行了交叉核对,具体结果如下:

3.4.1.1 活动数据 1: 天然气消耗量

表 3.4-1 对天然气消耗量核查一览表

活动数据1	天然气消耗量		
核查项	天然气		
单位	万Nm³		
初始排放报告数据	447. 21		
初始排放报告数据 来源	2024年天然气发票		
监测设备信息	天然气流量计		
核查确认数据	428. 77		
核查数据来源	2024年电天然气柴油抄表数据		
交叉核对情况	受核查企业对消耗的天然气按照生产区、食堂用气量进行分区抄表,企业内部抄表形成抄表记录,通过与全年天然气发票统计加和量进行比对,两套数据相差约1.05%。考虑到天然气公司抄表时间与受核查企业存在差异,核查组认为受核查企业抄表表数据真实、准确,因此,本次核查采信企业抄表数据。		
现场核查状态	通过		
现场核查描述	现场核对发现企业使用的天然气发票数据作为天然气消耗量数据,数据含食堂气量,无法区分,并且多算了约19天的气量,按照《核算指南》数据获取优先级,在企业有抄表数据时,且抄表数据可信、能区分食堂用量的情况下,应优先使用抄表数据。根据企业《2024年电天然气柴油抄表数据》,2024年企业天然气消耗量总量为429.6万Nm³,食堂天然气消耗量为0.83万Nm³,扣除食堂天然气消耗量后,得出企业核算边界内的2024年天然气消耗量为428.77万Nm³。		
核查结论	天然气消耗量数据来自于受核查方《2024年电天然气柴油抄表数据》,初版排放报告中采用天然气发票数据作为天然气消耗量数据,数据含食堂气量,且多算了约19天的气量,为447.21万Nm³,核算边界不准确,核算天数不准确,且在抄表数据可用的情况下,未按照《核算指南》数据选取优先级别进行采数,终版排放报告采用企业内部天然气抄表数据,不包含食堂气量,为428.77万Nm³,数据正确,符合《核算指南》要求。		

3.4.1.2 活动数据 2: 天然气低位发热量

表 3.4-2 对天然气低位发热量的核查

活动数据 2	天然气低位发热量
数据值	389.31
单位	GJ/万 Nm³
数据来源	《核算方法》缺省值
核查结论	重点排放单位天然气低位发热量来自《核算方法》缺省值,经核实确 认数据准确且符合《核算方法》要求。

3.4.1.3 活动数据 3: 柴油消耗量

表 3.4-3 对柴油消耗量的核查

活动数据1		柴油消耗量	
核查项	柴油		
单位	t		
初始排放报告数据	27.26		
初始排放报告数据 来源	《2024 年柴油 SAP 过账数据》		
监测设备信息	加油机		
核查确认数据	27.26		
核查数据来源	《2024年电天然气柴油抄表数据》		
交叉核对情况		天然气柴油抄表数据》, 》中柴油量核对,数据	
现场核查状态	通过	开具不符合项	否
现场核查描述	依据受核查单位提供的《2024年电天然气柴油抄表数据》与《2024年 柴油SAP过账数据》中柴油量进行了核对,数据一致,得出2024年企 业的柴油消耗量为27.26t。 核查组确认排放报告(终版)中的柴油消耗量数据来源《2024年电天 然气柴油抄表数据》,数据真实、可靠、正确,且符合《核算指南》的 要求。		
核查结论			

3.4.1.4 活动数据 4: 柴油低位发热量

表 3.4-4 对柴油低位发热量的核查

数据值	42.652
单位	GJ/t
数据来源	《核算方法》缺省值
核查结论	重点排放单位天然气低位发热量来自《核算方法》缺省值,经核实确
	认数据准确且符合《核算方法》要求。

3.4.1.5 活动数据 5: 电力消耗量

表 3.4-5 对电力消耗量的核查

活动数据1	电力消耗量			
核查项	电力			
单位	MWh 24351.74 2024 年电缴费发票			
初始排放报告数据				
初始排放报告数据 来源				
监测设备信息		电表计量		
核查确认数据	24427.47 2024年电天然气柴油抄表数据 受核查企业抄表总电量为24730.08 MWh,与《2024年电缴费发票》全年加和用量24654.36 MWh进行对比分析,两套数据相差约0.3%。考虑到电力公司抄表时间与受核查企业存在差异,核查组认为受核查企业抄表表数据真实、准确,因此,本次核查采信企业抄表数据。 通过 开具不符合项 是			
核查数据来源				
交叉核对情况				
现场核查状态				
现场核查描述	现场核对发现企业使用的电费发票数据作为消耗电量数据,按照《核算指南》数据获取优先级,在企业有抄表数据时,应优先使用抄表数据。 根据企业《2024年电天然气柴油抄表数据》,2024年企业核算边界内的消耗电量=总电量-技术部、办公楼的用电量,即24730.08 MWh-302.61 MWh=24427.47 MWh,因此,企业在核算边界内的用电量为24427.47 MWh。			
核查结论		消耗电量数据来自于受核查方《2024年电天然气柴油抄表数据》。初版排放报告中采用电缴费发票数据作为消耗电量数据来源,为		

活动数据1	电力消耗量		
	24351.74 MWh, 未按照《核算指南》数据选取优先级别进行采数, 数		
	据选取错误,终版排放报告采用抄表数据,为24427.47 MWh,数据正		
	确,符合《核算指南》要求。		

综上所述,核查组确认受核查方终版 2024 年度温室气体排放报 告中各个活动水平数据均符合《重庆市企业温室气体排放核算方法与 报告指南 机械设备制造业》的要求。

3.4.2 排放因子和计算系数数据及来源的核查

核查工作组依据《核算指南》,对排放单位《排放报告》中的每 一个排放因子和计算系数的来源及数值进行了核查,确认相关数据真 实、可靠、正确,且符合《核算方法》的要求。

序号	排放因子	数据	描述	核查结论
1	天然气单位热值 含碳量(tC/GJ)	0.01530	选取《核算方法》中的缺 省值	数据准确
2	天然气碳氧化率 (%)	99	选取《核算方法》中的缺 省值	数据准确
3	柴油单位热值含 碳量(tC/GJ)	0.02020	选取《核算方法》中的缺 省值	数据准确
4	柴油碳氧化率(%)	98	选取《核算方法》中的缺 省值	数据准确
5	外购电力排放因 子(tCO ₂ /MWh)	0.5227	选取最新发布的重庆市 电网排放因子	数据准确
6	上游铝锭排放因 子(tCO ₂ /t)	14.6600	选取《核算方法》中的缺 省值	数据准确
7	上游再生铝排放 因子(tCO ₂ /t)	0.4728	选取《核算方法》中的缺 省值	数据准确

表 3.4-6 缺省值一览表

核查组确认最终排放报告中的所有排放因子数据真实、可靠、正 确,且符合《核算方法》要求。

3.4.3 排放量的核查

根据《核算方法》,核查组通过审阅企业填写的排放报告,对所 提供的数据、公式、计算结果进行验算,确认所提供的数据真实、可 靠、正确。碳排放量汇总如下表所示。

表 3.4-7 化石燃料排放量计算表

年份	种类	化石燃料消 耗量A (万 Nm3)	低位发热 值B(GJ/ 万Nm3)	单位热值含 碳量C (tC/GJ)	碳氧化率D	排放量 G=A×B×C×D×44/ 12 (tCO2)
	天然气	428.77	389.31	0.01530	99	9271
2024	柴油	27.26	42.652	0.02020	98	85
2024			合计			9356

表 3.4-8 消耗电力对应产生的排放量计算表

年份	净购入电量A	排放因子B	排放因子C=A×B
2024	24427.47	0.5227	12769

表 3.4-9 消耗铝锭对应产生的排放量计算表

年份	铝锭净购入A	排放因子B	排放因子C=A×B
2024	8677	14.6600	127199

表 3.4-10 消耗再生铝对应产生的排放量计算表

年份	再生铝净购入A	排放因子B	排放因子C=A×B
2024	20245	0.4728	9573

表 3.4-11 排放量汇总表

类别	源类别	2024年
	化石燃料燃烧排放(tCO2)	9356
上 企业内部	工业生产过程排放(tCO2)	/
(范围1和范围2)	消耗电力对应产生的排放(tCO2)	12769
(化团174亿团2)	消耗热力对应产生的排放(tCO2)	/
	企业温室气体总排放量(tCO2e)	22125
铝锭供应商	消耗铝锭对应产生的排放(tCO2)	127199
(范围3)	消耗再生铝对应产生的排放(tCO2)	9573
(平区四3)	原材料温室气体总排放量(tCO2e)	136772
全部	总排放量(tCO2e)	158897

3.4.4 与配额分配相关的生产数据的核查

重点排放单位为机械设备制造行业,重点排放单位纳入配额分配 相关的主营产品为发动机缸体、变速箱壳体,产品代码为3502010104, 综合能耗经查询《重点用能单位能源利用状况报告(2024年度)》表 得到为 0.83 万吨标准煤。通过询问相关负责人与查询企业生产原始 报表得到生产天数为329天。

3.4.4.1 主营产品产量的核查

核查组确认重点排放单位 2024 年产品产量如下:

表 3.4—12 重点排放单位产品产量核查表

配额分配相关生产数据 1	原材	材料	产品产量			
产品名称	铝锭	再生铝	发动机缸体、变速箱壳体			
数据值	8677	20245	45713			
单位			吨			
数据来源		《202	24 年产量》			
监测频次	每日监测					
记录频次	每日记录,年度汇总					
监测设备校验	/					
数据缺失处理	无缺失					
交叉核对	核查值来源于重点排放单位《2024 年产量》,核查组 认为该数据可信。					
核对结论	年产量的数据来自受核查方《2024年产量》,数据合理、取值完整、准确,符合《核算指南》要求。					

3.4.4.2 生产天数的核查

核查组确认重点排放单位 2024 年生产天数如下:

表 3.4-13 生产天数的核查

配额分配相关生产数据 2	生产天数					
数据值	329					
单位	天					
数据来源	《2024 年生产天数》					
交叉核对	受核查方未提供生产天数的其他来源,无法交叉验证。					

核对结论	排放报告(终版)中的重点排放单位生产天数来源于《2024
	年生产天数》,数据真实、可靠,符合《核算指南》要求。

企业 2021 年—2024 年度排放情况 3.4.4.3

重点排放单位为机械设备制造行业,与配额分配相关的生产数据 如表 3.4—14 所示,碳配额仅限于企业内产生的碳排放量进行核算, 上游原材料供应商及运输产生的碳排放不纳入企业的碳配额核算。历 史数据来源于2023年核查报告和历史排放报告。

生产	产品	历史	产品产量	产品产量 历史排放		电子排放因 历史排	生产	
线	<i>)</i> — йй	年份	(t)	排放 量	强度	排放量	强度	天数
		2021 年	26769.31	17810	0.6653	16718	0.6245	315
浇	发动机缸体、	2022 年	26564.37	16460	0.6196	15395	0.5795	316
铸	变速箱壳体	2023 年	34238	18241	0.5328	19238	0.5619	323
		2024 年	45713.18	22125	0.4840	22125	0.4840	329

表 3.4—14 与配额分配相关数据

3.5 质量保证和文件存档的核查

核查组通过查阅文件和记录以及访谈相关人员,确定重点排放单 位在质量保证和文件存档方面做了以下工作:

- 1) 指定专人负责重点排放单位的温室气体排放核算和报告工作:
- 2) 制定了完善的温室气体排放和能源消耗台账记录,台账记录 与实际情况一致:

建议重点排放单位根据本次核查要求建立温室气体排放数据文 件保存和归档管理制度, 温室气体排放报告内部审核制度。

3.6 其他核查发现

无。

4 核查结论

4.1 排放报告与核算指南的符合性

经核查,核查组确认诺玛科(重庆)汽车零部件有限公司提交的 2024 年度最终版排放报告中的企业基本情况、核算边界、活动水平 数据、排放因子数据以及温室气体排放核算和报告,符合《重庆市企 业温室气体排放核算方法与报告指南 机械设备制造行业》的相关要 求。

4.2 排放量声明

诺玛科(重庆)汽车零部件有限公司修改后的 2024 年度的温室 气体排放的核算、报告符合《重庆市企业温室气体排放核算方法与报 告指南-机械设备制造业》的相关要求。经核查,诺玛科(重庆)汽 车零部件有限公司 2024 年度碳排放量如下:

4.2-1 经核查的排放量 (年度: 2024)

生产线	燃料燃烧排 放量(tCO ₂ e)	生产过程排 放量(tCO ₂ e)	消耗电力对 应的排放量 (tCO ₂ e)	消耗热力对 应的排放量 (tCO ₂ e)	总排放量(tCO ₂ 当量)
铸造	9356	0	12769	0	22125
	22125				

4.3 与配额分配相关的生产数据声明

诺玛科(重庆)汽车零部件有限公司 2024 年度与配额分配相关生 产数据符合《重庆市企业温室气体排放核算方法与报告指南-机械设备 制造业》等的相关要求。经核查,诺玛科(重庆)汽车零部件有限公司 2024 年度与配额分配相关生产数据如下:

表 4.3-1 与配额分配相关的生产数据(2024年度)

产品	产品产量(t)	排放量(tCO ₂)	生产天数(天)		
发动机缸体、变速箱壳体	45731	22125	329		

受核查方 2021-2023 年度核查报告中电网排放因子为 0.5810 tCO_2/MWh 或 0.4743t CO_2/MWh ,依据主管部门要求,对电网排放因子 采用 0.5227tCO₂/MWh 对 2021-2023 年度的排放量、排放强度等配 额分配相关生产数据进行修订如下:

表 4.3-2 经核查的与配额分配相关生产数据(2021—2023 年度)

生产线				历史排	电子排放因子修正后	生产天		
	产品	历史年份	产品产量(t)	排放量(tCO ₂ e)	强度 (tCO ₂ /t)	排放量(tCO ₂)	强度(tCO ₂ /t)	数
	发动机缸	2021年	26769.31	17810	0.6653	16718	0.6245	315
铸造	体、变速	2022年	26564.37	16460	0.6196	15395	0.5795	316
	箱壳体	2023年	34238	18241	0.5328	19238	0.5619	323

4.4 排放量及与配额分配相关的生产数据存在异常波动的原因说明

与配额分配相关生产 数据	2023	2024	2024 年相较于 2023 年波 动		
产品产量(t)	34238	45713.18	33.52%		
生产天数 (天)	323	329	1.86%		
排放量(tCO2)	18241	22125	21.29%		
排放强度(tCO2/t)	0.5328	0.484	-9.16%		
修正后排放量(tCO2)	19238	22125	15.01%		
修正后排放强度 (tCO2/t)	0.5619	0.484	-13.86%		

表 4.4-1 年际间排放量波动差异分析

受核查方 2024 年度比 2023 年度的产品产量上升了 33.52%, 二氧化碳排放量上升了 15.01%, 碳排放强度降低了 13.86%, 根据与受核查单位负责人沟通交流, 企业在 2024 年完成了几项重大节能项目:

- (1)2#抽排风机报备关停、4#抽排风机变频改造,年可节约用电 40万 kwh:
 - (2) 1#&3#抽排风机变频改造, 年可节约用电 30 万 kwh;
 - (3)9#压铸机主油泵伺服改造,年可节约用电90万kwh;
- (4) 车间 LED 灯升级,使用高亮度低功率的 LED 工矿灯改造, 年可节约用电 8 万 kwh:
- (5) 厂区照明常规路灯全部更换太阳能路灯改造, 年可节约用电 2万 kwh;
- (6) 熔炼工序直接使用直供铝液减少熔化量项目,年可节约天然 气 50 万 m³:

导致企业单位产品能耗水平从 0.22 tce/t 下降至 0.18 tce/t, 单位产品耗电量从 0.60MWh/t 下降至 0.53MWh/t, 单位产品耗气量从 0.011 万

方/t 下降至 0.009 万方/t, 2024 年单位产品碳排放强度较 2023 年下降 13.86%,核查组认为排放强度波动比例是合理的,不存在异常波动。

4.5 核查过程中未覆盖的问题或者需要特别说明的问题描述

其他特别需求说明的问题描述:无

5 附件

附件1:不符合项清单

受核查重点排放单位名称	诺玛科	斗(重庆)汽车零部件有限公司					
生产经营场所地址	重房	市江北区鱼嘴镇长茂路。	9 号				
统一社会信用代码	91500000596718821U	法定代表人	李植				
联系人	田湘平	联系方式	17623088865				
不符合巧	页描述	整改措施及相关证据	整改措施是否符合要求				
1. 综合能耗	填写错误	已修改	符合要求				
2、电力、天然气消耗量	是未使用抄表数据计算	电力、天然气消耗量采用 抄表数据进行计算	符合要求				
/		/	/				
/		/	/				
/		/	/				
核查工作组负责人(签名、	日期):	重点排放单位整改负责 人(签名、日期):	核查工作负责人(签名、 日期):				

附件2:对今后核算活动的建议

无

附件3: 支持性文件清单

序号	名称
1	营业执照
2	排污许可证
3	2023年核查报告
4	组织架构图
5	厂区平面图
6	2024电缴费发票
7	2024天然气缴费发票
8	2024年柴油SAP过账数据
9	2024生产天数
10	计量器具检定证书
11	2024年电天然气柴油抄表数据
12	2024年产量
13	初版排放报告
14	历史3年排放报告

2024年度配额相关基础数据收集表

	2027																	
							历史3	三年及2024 (产品产		数据	历史三	三年及2 天数		建生产	修正后	温室气体	本排放量	(吨)
企业编号	企业名称	所用核 算指南	所属区县	生产线	产品名称	产品计 量单位 (吨)	2021	2022	2023	2024	2021	2022	2023	2024	2021	2022	2023	2024
217	诺玛科重庆汽车零部件有限公司	《市业气放算与指机设造重。温体、方报、南城备业庆企室排核法告高城制》	两江新区	铸造	发机体变箱体	45713.18	26769.31	26564.37	34238	45713.18	315	316	323	329	16718	15395	19238	22125